Melamine
Pet Food, Infant Formula, and More

GETA March 3, 2009

Amy Arcus-Arth
Office of Environmental Health Hazard Assessment, Cal/EPA

DRAFT - DO NOT CITE OR QUOTE
Melamine

- $\text{C}_3\text{H}_6\text{N}_6$
- 66% nitrogen by mass
- triazine ring with three amine groups
- Mugshot:
Uses

• Melamine used commercially since late 1930s
• In production of polymer resins and polymeric cleaning agents
 • examples: laminates, glues, adhesives, moulding compounds, coatings, flame retardants
 • with formaldehyde in polymer resin plastic

Potential Exposures

• consumer exposure to melamine via these products is only with melamine in a polymer matrix – no contact with melamine alone
Potential exposures

- Melamine in resin polymer gives durable, semi-heat resistant plastic -- popular use tableware

- Tableware tested. Found melamine only leaches out at prolonged high temps and acidic conditions (30 mins, 203ºF, pH=2-5)
Other potential exposures

• Crop insecticide (cyromazine)
 • metabolized by microorganisms to melamine on plants
 • on most crops very little melamine residue
 • melamine residue always less than cryomazine residue (max residue level for cyromazine)
• Trichloromelamine
 • used as food equipment sanitizer
 • very small amount decomposes to melamine
• Fertilizer
 • melamine added to control the rate that nitrogen seeps into the soil
 • not approved for this use in the U.S.
Pharmacokinetics of melamine

- Numerous animal studies
- Passes through the body un-metabolized
- Almost all excreted through the kidneys
- No data are available in humans
Toxicity studies of melamine

• National Toxicology Program (NTP) (1983)
 • Rats and mice
 • Melamine in feed
 • Acute: LD$_{50}$ quite high
 • Subchronic (13 wk) and chronic (103 wk)
 • bladder epithelial hyperplasia and ulceration
 • bladder calculi
 • kidney inflammation (chronic only)
 • Cancer (chronic exposure)
 • transitional cell carcinomas (urothelial carcinomas) - bladder
 • only in male rats
 • only at highest dose (4500 ppm in feed)
 • statistically associated with calculi
Other melamine toxicity studies

• Pigs, sheep, fish
• Findings consistent with NTP study
 – Effects isolated urinary tract
 – inflammation, crystals, calculi
• Dose dependent
Other tox studies - melamine

• not irritating to skin or eye
• not sensitizing
• not teratogenic
• not genotoxic
General consensus on melamine exposure and toxicity until 2007

• from monitoring and models:
 – exposure of general public to melamine is considered to be very low

• melamine considered to have low toxicity
Pet Food Poisoning Outbreak

• North America 2007, dogs and cats
• Acute renal failure within hours of consuming pet food

• Estimated morbidity in 1000’s, deaths in 100s
• Crystals in urine

• Animals that died: yellowish-brown crystals in renal tubules
Pet Food Poisoning (cont’d)

• Numerous brand pet foods, all traced to one manufacturer contracted by all
• Manufacturer recently switched to wheat gluten ingredient from China
• Analyzed pet food for mycotoxins, metals, pesticides - nsf
• Analysis for small molecules – melamine identified
• Largest FDA recall pet food
The Great Pretender

- How did melamine get into pet food??
- Foods - protein levels not directly measured - instead nitrogen level used
- Melamine nitrogen-rich so adding melamine will falsely increase apparent protein level of food
- In China, melamine had been added to gluten and rice protein concentrate to increase apparent protein levels
- Gluten or concentrate used as pet food ingredient
Pet food poisoning question

• Why such high morbidity and mortality in pets when melamine had been considered to have very low toxicity?

• Analysis of pet food and wheat gluten samples found in addition to melamine:
 • cyanuric acid
 • ammeline
 • ammelide
The Family Tree

Melamine → Ammeline

Cyanuric Acid ← Ammelide

DRAWN DO NOT CITE OR QUOTE
Toxicity due to one of melamine analogues?

- Ammeline and ammelide
 - Little data
 - Used with other chemicals in polymers, etc
Cyanuric acid

• Tox studies in rats, mice, dog
 • Results similar to melamine
 • Acute renal effects only at very high doses
 • Subchronic and chronic exposures, high doses resulted in bladder calculi

• Potential exposure
 • Dichloroisocyanurates - used as disinfectant in swimming pools
 • Dissociates to cyanuric acid
Pet Food Poisonings

• Pet Food Poisoning Asia 2004
 • Clinical signs similar to N.Am 2007
 • Acute renal failure, uremia
 • 6000 dogs, smaller number of cats
 • Had been attributed to mycotoxin
• Both Asia (2004) and North America (2007) incidents
 • Animals with renal failure evaluated
 • Crystals and calculi found in kidney and bladder
 • But crystals not composed of melamine alone – instead melamine cyanurate
Melamine cyanurate

• Melamine forms hydrogen bonds with cyanuric acid to form melamine cyanurate

• Note: still available amine group, carbonyl group
Melamine cyanurate

- Highly organized lattice crystal structure
Dilated distal tubule contains a cluster of round green melamine/cyanuric acid crystals with radiating spokes and concentric striations (arrow)
Melamine cyanurate

- Toxicity study
 - Experimental feeding
 - Mixture of melamine plus cyanuric acid
 - Found to be much more toxic than feeding either melamine or cyanuric acid alone
 - Dogs, cats, rats, pigs, fish
Melamine cyanurate

• Melamine cyanurate much less soluble in water than either melamine or cyanuric acid alone

<table>
<thead>
<tr>
<th></th>
<th>Melamine</th>
<th>Cyanuric acid</th>
<th>Melamine cyanurate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>3.1 g/L</td>
<td>2 g/L</td>
<td>0.01 g/L</td>
</tr>
</tbody>
</table>

DRAFT - DO NOT CITE OR QUOTE
Why does melamine cyanurate not precipitate before reaching kidney tubules?

• “Melamine - cyanuric acid complex” identified in food
• Complex stable in gluten and pet food
• Low pH of stomach, melamine and cyanuric acid dissociate
• Probable absorption of cyanuric acid in stomach and melamine in small intestine
 – cyanuric acid pKa = 6.9
 – melamine pKa = 5
• Reform complex in renal tubules → crystals
Hypotheses for precipitation in kidney

• critical levels melamine and cyanuric acid needed for precipitation
• increased concentration melamine and cyanuric acid as move down osmotic gradient in kidney
Sources of cyanuric acid in melamine tainted food

- Hypothesis 1: Melamine in food broken down by microorganisms to cyanuric acid
 - Unlikely since many foods processed at high temps and under hygienic conditions
- Hypothesis 2: Use of impure melamine is more likely
 - Melamine produced cheaply from coal -- can result in “melamine scrap” that contains ammeline, ammelide, cyanuric acid
Infant Formula 2008

- First report, China, September 2008
- Infants: thousands ill, four deaths
- Renal calculi, hematuria, uremia, renal failure
- Linked to consumption of infant formula
- Formula found to contain up to 2500 ppm melamine
- It was later found that milk suppliers had diluted milk and added melamine to boost protein content
Melamine in foods

• Do know that melamine added to increase apparent protein level in
 • milk (probably powdered)
 • gluten (corn, wheat)
 • protein concentrate

• These tainted products then used as ingredients for end-product food
Melamine in foods (cont’d)

<table>
<thead>
<tr>
<th>Food</th>
<th>Max ppm</th>
<th>Probable Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant formula</td>
<td>2563</td>
<td>Tainted powdered milk</td>
<td>Chinese manufacturers</td>
</tr>
<tr>
<td></td>
<td>0.14</td>
<td>Tainted powdered milk or sanitizer</td>
<td>U.S. manufacturer (1)</td>
</tr>
<tr>
<td>Other food products</td>
<td>6.8</td>
<td>Tainted powdered milk</td>
<td>e.g., cookies, ice cream, beverages, crackers, candy</td>
</tr>
<tr>
<td>Ammonium bicarbonate</td>
<td>2470</td>
<td>Probably due to cross contamination in plant that manufactures both</td>
<td>Leavening agent</td>
</tr>
<tr>
<td>Eggs</td>
<td>4.6</td>
<td>Tainted animal feed</td>
<td></td>
</tr>
</tbody>
</table>
Chinese infants ill from tainted formula

• Guan et al. (2009) identified risk factors for renal calculi
 • Preterm
 • Higher levels melamine in formula
• Sun et al. (2008) examined composition of calculi (14 stones examined)
 • 3:2 molar ratio uric acid to melamine
 • cyanuric acid, ammeline, ammelide – not detected
Why uric acid and not cyanuric acid in formula poisonings?

- Cyanuric acid not in formula?
 - No reports of cyanuric acid detected in (Chinese) formula
 - Not sure if formula tested for cyanuric acid
 - Sun et al. specifically reported cyanuric acid not found in stones
 - So evidence suggests no cyanuric acid in formula but not definitive
Uric acid in humans vs. cats, dogs

• In most mammals uric acid metabolized via uricase to allantoin

• Exceptions:
 • Higher primates, including humans
 • Dalmations
Uric Acid in mg/dL

<table>
<thead>
<tr>
<th></th>
<th>Serum</th>
<th>Urine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>low-birthwt neonate</td>
<td>5.8</td>
<td>86</td>
</tr>
<tr>
<td>low-birthwt 11-mos age</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Child</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0 – 6.5</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3.6 – 7.3</td>
<td>45 +/- 18</td>
</tr>
<tr>
<td>Female</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Cats</td>
<td>0.0 – 0.7</td>
<td>6.3</td>
</tr>
<tr>
<td>Dogs</td>
<td>0.0 – 1.0</td>
<td>~2 - 12</td>
</tr>
</tbody>
</table>
Age related susceptibility to melamine?

- Older ages consumed non-formula foods containing melamine – no acute effects
- Why such high morbidity in infants?
- Infants’ increased exposure
 - Greater calories consumed per bodywt
 - Formula is primary or sole source of nutrition for young infants
- Infants’ increased susceptibility
 - Infants have greater urinary uric acid levels relative to older ages (next slide)
Uric acid excretion by age

<table>
<thead>
<tr>
<th>Age</th>
<th>29-33 wks</th>
<th>38-40 wks</th>
<th>5-9 yrs</th>
<th>adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>7.7</td>
<td>1.7</td>
<td>3.7</td>
<td>5.1 (males)</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td>4.3 (females)</td>
</tr>
<tr>
<td>Fractional excretion uric acid (%)</td>
<td>61%</td>
<td>38%</td>
<td>10%</td>
<td>7%</td>
</tr>
<tr>
<td>Urine uric acid (mg/dL)</td>
<td></td>
<td>86</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>
Infant susceptibility (cont’d)

- Smaller renal tubular and blood vessel lumens
- easier irritation of tubular walls
- occlusion of tubular lumens
- compression of blood vessels by clumped crystals (stones) – more easily limit blood flow
- Lower glomerular filtration rate vs. older ages
- takes longer to filter metabolic waste and toxic substances
Other melamine co-crystals

- Co-crystallization of melamine with ammeline or ammelide not as structurally strong as with uric acid or cyanuric acid

![Molecular structures](image)
Summary

• Exposure via intentionally tainted food – public health measures in place so future outbreaks involving melamine unlikely

• Mixtures
 • Exposure to mixtures
 • In-vivo mixture of exogenous substance (e.g., melamine) and physiological substance (e.g., uric acid)

• What are unique characteristics of subpopulations?
• Mechanism of toxicity and relevance to other chemicals