method
greenskeeping

people against dirty™
Rift 1: the designer’s eye was on everything else inside the home
Rift 2: cleaning products are made from hazardous waste
(so be careful what you put up your nose)
Rift 3: green products implied sacrifice
method revolution
creating sudden and dramatic change in how people take care of their homes
not just gorgeous, disruptive + smart too.

it works. and we’ve got the science chops to back it.

not just any fragrance will do. we have a deeply differentiated pov + experience.

the choices we make are healthy for people, animals + the planet.
Brand ROI over the Past Seven Years

method ranked #11 out of 25,000 global brands that drove the most ROI over the past seven years.
how greenskeeping works at method

WHAT WE DO HOW WE DO IT WHO WE ARE

GREENSKEEPING
planned obsolescence of sustainability
WHAT WE DO

ingredients
- transparency
- material assessment
- ingredient safety

packaging
- bottles from bottles
- recycled plastic
- recycling plastic codes
- compaction
- green packaging design

formulation
- health + eco screening
- dirty ingredient list
- phosphates
- triclosan
- 3rd party assessment
- the highest standard
- smart science
- external validation

fragrance

color

preservatives

natural
- naturally derived
- biodegradable
- c2c certified
- non-toxic

terminology
HOW WE DO IT

sourcing + manufacturing + transportation + incentivizing + offsetting

greensourcing program
blue collar sustainability
fuel efficiency
biodiesel fleet
reduction incentives
WHO WE ARE

planet+climate
climate-conscious
LEED headquarters

change
a founding B corp

transparency
radical transparency

animals
no animal testing
no animal by-products
pet friendly

healthy home
safe ingredients

community
methodcares
Cradle to Cradle® concept

A material use cycle that seeks to eliminate waste and/or and virgin resource extraction through the creation of closed/continuous loops. Cradle to Cradle® traces a material from the time it is extracted to the point at which it is recycled/reclaimed.
health + eco screening
we use the precautionary principle, meaning that if there’s a chance that an ingredient isn’t safe, we don’t use it.

the dirty ingredient list
conventional cleaning ingredients like phosphates and bleach that method chooses to never use in our formulas.

3rd party assessment
all method ingredients are rigorously evaluated by an independent material research agency.

the highest standard
Cradle to Cradle® is our mantra for the design of safe, green products.

smart science
our formulators use advanced green chemistry technologies to create powerful and safe formulations.

external validation
the world’s only line of cleaning products to be Cradle to Cradle® certified for their responsible manufacturing, green package design and safe + effective formulation.
EPEA – external material assessment partner

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye irritation potential</td>
<td>Initiating (Risk phrase: R36)</td>
</tr>
<tr>
<td>Sensitization potential</td>
<td>Not sensitizing</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>Weak hint for mutagenicity</td>
</tr>
</tbody>
</table>

Additional Criteria:

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutagenicity</td>
<td>Weak hint for mutagenicity</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>No data available</td>
</tr>
<tr>
<td>Developmental toxicity</td>
<td>Fetal toxic effects at high concentrations</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>Moderate to good biodegradability</td>
</tr>
<tr>
<td>Bioaccumulation potential</td>
<td>Low bioaccumulation</td>
</tr>
<tr>
<td>Fish toxicity</td>
<td>Not toxic</td>
</tr>
<tr>
<td>Daphnia toxicity</td>
<td>Not toxic</td>
</tr>
<tr>
<td>Bacterial inhibition test</td>
<td>Not toxic</td>
</tr>
</tbody>
</table>
Basis for seeking alternatives

• Failure on key endpoint
 – eg acrylic acid + biodeg
 – eg. fragrance solvents + emulsifiers
• Detection in WWTP effluent or downstream
• Absence of proof of safety – precautionary mentality
 – Nitrosamine formation from secondary amines (DEA)
2 Overview of Eco-/Toxicological Properties

<table>
<thead>
<tr>
<th>Toxicological Criterion</th>
<th>Acute toxicity</th>
<th>Delayed toxicity</th>
<th>Sensitization potential</th>
<th>Skin penetration potential</th>
<th>Irritation potential</th>
<th>Carcinogenicity</th>
<th>Mutagenicity</th>
<th>Developmental toxicity</th>
<th>Degradation</th>
<th>Bioaccumulation potential</th>
<th>Aquatic toxicity</th>
<th>Bacteria toxicity</th>
<th>EPEA Evaluation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PGME</td>
<td></td>
</tr>
<tr>
<td>CAS # 107-36-2</td>
<td></td>
</tr>
<tr>
<td>2PGMEA</td>
<td></td>
</tr>
<tr>
<td>CAS # 108-65-8</td>
<td></td>
</tr>
<tr>
<td>2PG1EE</td>
<td></td>
</tr>
<tr>
<td>CAS # 1569-02-4</td>
<td></td>
</tr>
<tr>
<td>2PG1EEA</td>
<td></td>
</tr>
<tr>
<td>CAS # 54838-24-6</td>
<td></td>
</tr>
<tr>
<td>2PG1BE</td>
<td></td>
</tr>
<tr>
<td>CAS # 5131-66-8</td>
<td></td>
</tr>
<tr>
<td>2PGPNE</td>
<td></td>
</tr>
<tr>
<td>CAS # 770-35-4</td>
<td></td>
</tr>
<tr>
<td>1PO2ME</td>
<td></td>
</tr>
<tr>
<td>CAS # 1589-47-5</td>
<td></td>
</tr>
<tr>
<td>1PG2MEA</td>
<td></td>
</tr>
<tr>
<td>CAS # 70857-70-4</td>
<td></td>
</tr>
<tr>
<td>DPPE</td>
<td></td>
</tr>
<tr>
<td>CAS # 34920-04-8</td>
<td></td>
</tr>
<tr>
<td>DPGE</td>
<td></td>
</tr>
<tr>
<td>CAS # 300025-38-8</td>
<td></td>
</tr>
<tr>
<td>TPGE</td>
<td></td>
</tr>
<tr>
<td>CAS # 25490-46-1</td>
<td></td>
</tr>
</tbody>
</table>

- **low or no hazard identified**
- **medium hazard identified**
- **severe hazard identified**
- **hazard not evaluated due to lack of data**

©2007 EPEA Internationale Umweltforschung GmbH
Comparison of Glycol Ethers

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Dipropylene Glycol Monomethyl Ether (DPGME or DPM)</th>
<th>Tripropylene Glycol Monomethyl Ether (TPGME or TPM)</th>
<th>Methoxy Methyl Butanol (MMB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic name</td>
<td>1-(2-methoxy-1-methylethoxy)-2-propanol (mixture of isomers)</td>
<td>1-[2-(2-methoxy-1-methylethoxy)-1-methylethoxy]-2-propanol (mixture of isomers)</td>
<td>3-Methoxy-3-methyl-1-butanol</td>
</tr>
<tr>
<td>CAS #</td>
<td>34590-94-8</td>
<td>25468-49-1</td>
<td>56530-66-3</td>
</tr>
<tr>
<td>Boiling point [°C]</td>
<td>190</td>
<td>242</td>
<td>173</td>
</tr>
<tr>
<td>Vapor pressure [mm Hg at 20 °C]</td>
<td>0.28 (other source: 1 mbar)</td>
<td>0.01 (other source: 0.03 mbar)</td>
<td>0.9</td>
</tr>
<tr>
<td>Water solubility</td>
<td>completely soluble</td>
<td>completely soluble</td>
<td>100 g/l at 25°C</td>
</tr>
<tr>
<td>Function</td>
<td>solvent</td>
<td>solvent</td>
<td>solvent</td>
</tr>
<tr>
<td>Application</td>
<td>mobile fragrance diffuser</td>
<td>plug-in fragrance diffuser</td>
<td>(to be determined by method)</td>
</tr>
<tr>
<td>Volume</td>
<td>low (2)</td>
<td>medium (3)</td>
<td>(to be determined by method)</td>
</tr>
<tr>
<td>Acute oral toxicity</td>
<td>LD_{50}[rat] = 5,500 mg/kg</td>
<td>LD_{50}[rat] = 3,300 mg/kg</td>
<td>LD_{50}[rat] = 4,300 mg/kg</td>
</tr>
<tr>
<td>Acute dermal toxicity</td>
<td>LD_{50}[rabbit] > 10,000 mg/kg</td>
<td>LD_{50}[rabbit] > 19,220 mg/kg</td>
<td>LD_{50}[rabbit] > 2,000 mg/kg</td>
</tr>
<tr>
<td>Repeated dose oral toxicity</td>
<td>very low</td>
<td>weak</td>
<td>weak</td>
</tr>
<tr>
<td>Skin irritation potential</td>
<td>very slightly irritating (rabbit)</td>
<td>mildly irritating (rabbit)</td>
<td>mildly irritating (rabbit)</td>
</tr>
<tr>
<td>Eye irritation potential</td>
<td>irritating (rabbit)</td>
<td>not irritating (rabbit)</td>
<td>irritating (rabbit)</td>
</tr>
<tr>
<td>Sensitization potential</td>
<td>not sensitizing</td>
<td>no data available, but no sensitization expected</td>
<td>not sensitizing</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>negative</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>no data available, but no carcinogenicity expected</td>
<td>no data available, but no carcinogenicity expected</td>
<td>no data available, but no carcinogenicity expected</td>
</tr>
<tr>
<td>Developmental toxicity</td>
<td>negative</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>Biodegradability</td>
<td>readily biodegradable (calculated)</td>
<td>readily biodegradable (calculated)</td>
<td>moderately biodegradable</td>
</tr>
<tr>
<td>Bioaccumulation potential</td>
<td>BCF = 3 (calculated)</td>
<td>BCF = 3 (calculated)</td>
<td>BCF = 3 (calculated)</td>
</tr>
<tr>
<td>Fish toxicity</td>
<td>LC_{50} [fish] > 150 mg/l</td>
<td>LC_{50} [fish] > 100 mg/l</td>
<td>LC_{50} [fish] > 100 mg/l</td>
</tr>
<tr>
<td>Daphnia toxicity</td>
<td>LC_{50} [daphniae] > 1,000 mg/l</td>
<td>no data available</td>
<td>EC_{50} [daphniae] > 1,000 mg/l</td>
</tr>
<tr>
<td>Bacterial inhibition test</td>
<td>EC_{15} [bacteria] = 4,168 mg/l</td>
<td>no data available</td>
<td>EC_{50} [bacteria] > 1,000 mg/l</td>
</tr>
</tbody>
</table>
solvent alternatives assessments

Method / Screening of Propylene Glycol

<table>
<thead>
<tr>
<th>EPEA#</th>
<th>CAS#</th>
<th>Substance</th>
<th>Structure</th>
<th>EPEA classification</th>
<th>Identified issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>57-55-6</td>
<td>Propylene Glycol</td>
<td></td>
<td></td>
<td>low acute toxicity and low sensitisation potential; hints for weak mutagenicity but no risks expected, low aquatic toxicity, low bioaccumulation potential, readily biodegradable</td>
</tr>
</tbody>
</table>

Method / Assessment of 1,3-Propanediol

<table>
<thead>
<tr>
<th>EPEA#</th>
<th>CAS#</th>
<th>Substance</th>
<th>Structure</th>
<th>EPEA classification</th>
<th>Identified issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>39610</td>
<td>504-63-2</td>
<td>1,3-propanediol</td>
<td></td>
<td></td>
<td>low acute toxicity, low delayed toxicity, low skin sensitisation and penetration potential, low developmental toxicity, low aquatic toxicity, low bioaccumulation potential, readily biodegradable</td>
</tr>
</tbody>
</table>
Assessment of SEGETIS SG0115X and SG0125X

<table>
<thead>
<tr>
<th>Product name</th>
<th>SG0115X</th>
<th>SG0125X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute oral toxicity</td>
<td>$LD_{50} > 5,000 \text{ mg/kg}$ (calculated)</td>
<td>$LD_{50} > 5,000 \text{ mg/kg}$ (calculated)</td>
</tr>
<tr>
<td>Acute dermal toxicity</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Skin irritation potential</td>
<td>moderate to mild</td>
<td>moderate</td>
</tr>
<tr>
<td>Eye irritation potential</td>
<td>mild irritant</td>
<td>mild irritant</td>
</tr>
<tr>
<td>Sensitization potential</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Mutagenicity</td>
<td>not expected (calculated)</td>
<td>not expected (calculated)</td>
</tr>
<tr>
<td>Carcinogenicity</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Developmental toxicity</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Biodegradation, aerobic</td>
<td>readily biodegradable (calculated)</td>
<td>readily biodegradable (calculated)</td>
</tr>
<tr>
<td>Biodegradation, anaerobic</td>
<td>no data available</td>
<td>no data available</td>
</tr>
<tr>
<td>Bioaccumulation potential</td>
<td>not bioaccumulative, soluble in water, $BCF=5.2$ (calculated)</td>
<td>not bioaccumulative, soluble in water, $BCF=13$ (calculated)</td>
</tr>
<tr>
<td>Fish toxicity</td>
<td>moderate (calculated)</td>
<td>moderate (calculated)</td>
</tr>
<tr>
<td>Daphnia toxicity</td>
<td>EC_{50} (48h) = 386 mg/l</td>
<td>EC_{50} (48h) = 447 mg/l</td>
</tr>
<tr>
<td>Algae toxicity</td>
<td>IC_{50} (96h) > 1,000 mg/l</td>
<td>IC_{50} (96h) > 1,000 mg/l</td>
</tr>
<tr>
<td>EPEA assessment</td>
<td>recommended for use</td>
<td>recommended for use</td>
</tr>
</tbody>
</table>
surfactant alternatives criteria

some preferences

• Prefer aquatic toxicity LC50 over 10mg/L
• Readily aerobically biodegradable per OECD 301
• Prefer indication of anaerobic biodeg
• Avoid combination of high aquatox + slow biodeg
• Avoid C-S bonds
• Avoid branching
• Ethoxylates: 1,4-dioxane under 20ppm on per active basis
Process challenges

What’s not on the MSDS

- Preservation: formaldehyde, glutaraldehyde
 - Move to UP, MCIT, citric acid

- Process aids:
 - EDTA (clarifying)

- Unreacted raw materials, derivatives, byproducts
 - Eg amidoamine as driver of contact dermatitis allergy in cocamidopropyl betaine
Material Information Disclosure

Material Name (INCI format):
CAS RN:
Trade Name:
Producing Company:
Location of Manufacture:

Full Material Composition

1: % active:

2: Diluent(s):

3: Preservative used? (Y / N):
 Name of preservative (INCI or equivalent):
 Preservative CAS RN:
 Preservative Use Level:
 Alternate preservatives (name, CAS and use level if applicable):

4: Feedstock Origin
 Primary (alkyl) feedstock used for material manufacture:
 Country of feedstock cultivation:
 If alternate (alkyl) feedstock and/or countries of origin may be used please identify these as well:

5: Trace Materials
 Identify all unreacted raw materials, reaction byproducts, residual catalysts, or additives that may be present in the final product.
 Name:
 Expected and maximum concentration:

Note: If any of the above details change, it is imperative that Method be notified at: material.info@methodhome.com

Material Procurement Requirements

Material Name (INCI format): Sodium Lauryl Sulfate
Material CAS RN: 151-21-3
Products containing this material: handwash, foaming handwash, dish soap.

Material Requirements:

1- Preservatives:
 i. Formaldehyde must not be used as a preservative in any method material.
 ii. Unpreserved materials are often preferred.
 iii. Organic acids (eg citric acid) is a preferred preservative.
 iv. Kathon CG is an approved preservative in most cases.

2- Plant Oil Feedstock preference, in descending order:
 i. Coconut oil (from central/south America)
 ii. Certified sustainably produced palm/kernel oil (or credited as such)
 iii. Soy oil or Palm/Palm Kernel Oils from north, central or south America.
 iv. RSPO-approved palm/palm kernel oil
 v. Last resort is commodity palm / palm kernel oil

Note: Petroleum feedstocks must not be used for the alkyl chain component of the ingredient.

3- processing aids:
 i. EDTA must not be added to the material
 ii. All additives must be disclosed

Approved materials:

1- Stepanol WA-extra-K
Introducing the world’s smartest, greenest, smallest, easiest laundry detergent.
smarter, easier, greener

- No mess precision dosing pump, you only need one hand!
- Patent pending formula seeks out dirt and stains
- 95% plant-based formula ultra concentrated for no excess water
35% lower overall carbon footprint…

If the entire category switched to 8X concentrated we would save:

2.18 Million Barrels of Oil

24,000 Tons of Plastic

66 Million Gallons of Water
say no to jugs.

say no to spilling, say no to leaving messy and annoying blue stains, say see ya to staining your arm just because you went to do a load of laundry, say no to messy, heavy, wasteful jugs.

say yes to method laundry detergent. it finds stains in a whole new way to get your clothes amazingly clean. the secret is our patent pending formula that’s so frickin’ concentrated, 50 loads fit in a tiny bottle. and if that’s not enough, we ditched that messy cap for an easy-dose pump. oh yeah.

it’s time to say yes, america. learn more at methodlaundry.com
Trust through transparency

Building a brand in the social media era requires an uncomfortable level of transparency and lack of control
go naked

don’t try to convince.
instead, empower and equip.

www.methodhome.com
buh bye jug. hello method laundry.

nobody loves doing laundry. except us. to help everybody else, we found a smarter way.

smarter: a powerful patent-pending formula made from nature’s most effective cleaners that we’re calling smartclean technology.

easier: the custom pump design means no-mess dosing directly into the machine.

greener: super compacted, ultra concentrated detergent means way less plastic, water and energy used to make it.

LOW CARBON FOOTPRINT innovative design, formula and materials reduce the carbon footprint of this detergent by 35% compared to standard 2x detergent

ULTRA COMPACTION results in 35% less energy used to make and ship the product, and 36% less plastic in the packaging

PLANT-BASED INGREDIENTS over 95% of the formula comes from renewable sources

you’ve got laundry, we’ve got options. available in 25 and 50 load counts in fresh air, peony blossom and free+clear

NO OVERDOSEING the unique and easy-to-use precision-dosing pump means no drips and no unneeded detergent dosed into the machine. it’s a dirty little secret of laundry that those jug caps often lead you to use more detergent than anyone ever needs. with our custom-designed precision pump system, you use exactly as much detergent as you need to get your clothes amazingly clean, with no messy drips.

23,600 metric tons plastic saved if the category changed to ultra compaction
FAQ's

Q. Is this product HE compatible?
A. Yes. Method laundry detergent is compatible both with H.E. and standard washing machines.

Q. What does “plant-based” mean?
A. It means that the cleaning ingredients in the detergent, the surfactants, are made from vegetable-based materials. Specifically, they are made using coconut, soy, and palm oils.

Q. Is this a natural detergent?
A. Over 95% of the ingredients in the detergent are made from natural materials, however, since a small portion of the formula is made of safe ingredients that are not from natural sources, we choose to not describe the detergent as natural. This is a reflection of Method’s very high bar for the term “natural”.

Q. Does this detergent contain dyes?
A. No.

“Oh, holy wow. I think I am in love with a laundry detergent. It’s convenient, compact and it smells heavenly!!! Thanks to the pump, I finally know how much detergent to use and since it’s so concentrated, no more messy huge jugs! I don’t know what kind of feedback you all are getting about this but I would buy this product over the detergent I have used all my adult life.”

- Rebecca, person against dirty

Packaging Details

<table>
<thead>
<tr>
<th>Packaging Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP TUBE + PUMP</td>
</tr>
</tbody>
</table>
| - Mixed virgin sources, primarily polypropylene (PP)
- Mostly recyclable |
| **BOTTLE** |
| - HDPE bottle
- Recyclable |

methodhome.com
S.1697 & H.R.3057
Household Product Labeling Act of 2009

Requires household cleaning products to bear labels that state completely and accurately all ingredients.
method. greensourcing

under this program, we monitor and audit our suppliers to find ways to reduce waste, to save energy, to eliminate water use, and to use closed-loop manufacturing practices wherever we can.

water

we have factories that put nothing down the drain and recycle 100% of the water we use to make method products, but we have some that don't. we're working on making every factory waste-free.

energy

we are carbon neutral in 100% of our manufacturing, office operations and employee commuting in travel. we achieve this through a combination of energy reduction, alternative fuels, generating our own solar energy, and alternative fuels, offsetting everything else.

materials

our goal is to eliminate it all together. have factories that recycle 100% of their cardboard and 100% of their shrink-wrap, so that nothing goes to the landfill. we are constantly looking for ways to design out waste, and we're sharing best practices across our company.
process water recovery at filling plant
people against dirty
methodhome.com