

Augmented Intelligence and the Environmental Health Sciences

Nicole C. Kleinstreuer, PhD

Director, NTP Interagency Center for the Evaluation of Alternative Toxicological Methods

National Institutes of Health • U.S. Department of Health and Human Services

NICEATM and ICCVAM

 National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), supporting the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM)

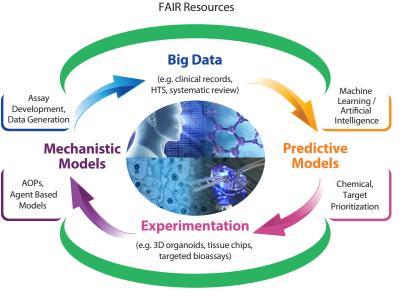
 ICCVAM Authorization Act of 2000: To establish, wherever feasible, guidelines, recommendations, and regulations that promote the regulatory acceptance of new and revised toxicological tests that protect human and animal health and the environment while reducing, refining, or replacing (**3Rs**) animal tests and ensuring human safety and product effectiveness.

7 Regulatory Agencies

Consumer Product Safety Commission Department of Agriculture Department of the Interior Department of Transportation Environmental Protection Agency Food and Drug Administration Occupational Safety and Health Administration

*Other participants include: NCATS, Tox21 Representatives

10 Research Agencies

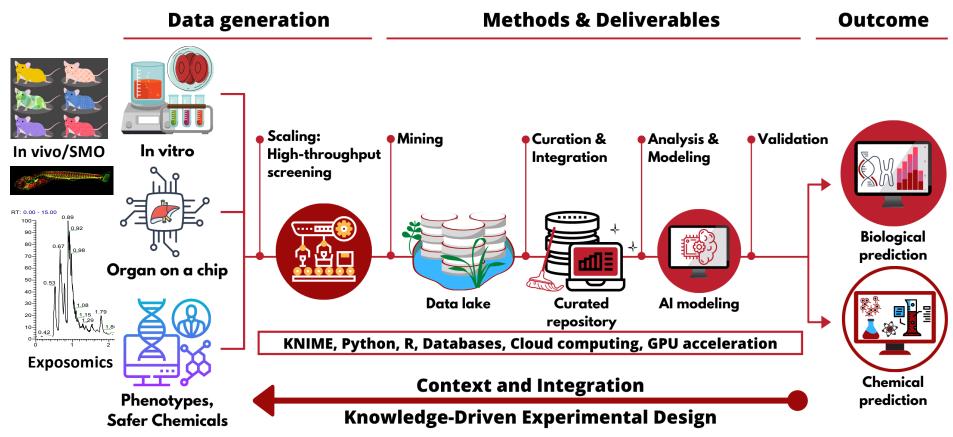

Agency for Toxic Substances and Disease Registry National Institute for Occupational Safety and Health National Cancer Institute National Institute of Environmental Health Sciences National Library of Medicine National Institutes of Health Department of Defense Department of Energy National Institute of Standards and Technology Veterans Affairs Office of Research and Development

More information: <u>https://ntp.niehs.nih.gov/go/iccvam</u>

Ongoing NICEATM and ICCVAM Projects

- Integrated Chemical Environment
- OPERA (QSAR/QSPR)
- Computational Chemistry
- Quantitative IVIVE
- Reference data curation
- · Variability of in vivo data
- Acute Systemic Toxicity
- Dermal absorption
- Eye and skin irritation
- Skin sensitization
- Ecotoxicology
- Carcinogenesis
- Cardiovascular Toxicity
- Developmental Toxicity
- DNT Testing Battery
- Zebrafish models
- Animal-free affinity reagents
- Microphysiological Systems
- Evolving Process of Validation

Regulatory/Safety/Efficacy Decisions



https://ntp.niehs.nih.gov/go/ 2021iccvamreport

ICCVAM Workgroups

- Acute Toxicity
- Consideration of Alternative Methods
- Ecotoxicity
- In Vitro to In Vivo Extrapolation
- Nanomaterials
- Validation
- NAMs for PFAS

The Essentiality of Computational Resources

Adapted from Alves et al. 2021

A Slightly Different Definition of AI: Augmented Intelligence

W. Ross Ashby: Intelligence Amplification (1956) J. C. R. Licklider: Man-Computer Symbiosis (1960) Douglas Engelbart: Augmenting Human Intellect (1962) The use of computational tools, information technology, and cognitive algorithms such as machine learning and artificial intelligence to **complement** and **enhance** human intelligence.

(Q)SAR (Quantitative) Structure-Activity Relationship **IN SILICO**

Al Example: Global Crowdsourcing Predictive Models

- 35 Groups: academia, industry, govt
- Curate reference data to train & test models: >10k chemicals
 - Use molecular structure and chemical properties to predict toxicity (e.g. endocrine disruption, acute systemic effects)
- Combine best models together into "ensemble" approaches
- Create open access AI/ML modeling suite

https://github.com/NIEHS/OPERA

Kleinstreuer et al. Comp Tox (2018); Mansouri et al. J Cheminform (2018), Env Health Persp (2020, 2022)

International collaborative projects

CERAPP

Collaborative Estrogen Receptor Activity Prediction Project (2015/16)

Mansouri et al. (https://doi.org/10.1289/ehp.1510267)

CoMPARA

Collaborative Modeling Project for Androgen Receptor Activity (2017/18)

Mansouri et al. (https://doi.org/10.1289/EHP5580)

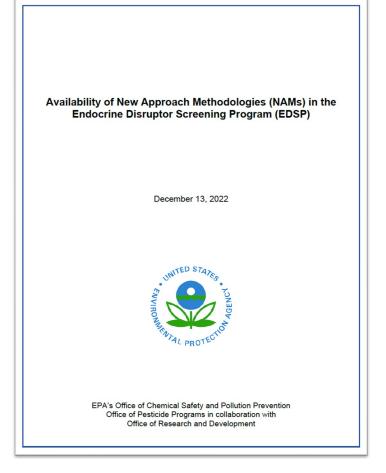
CATMOS Collaborative Acute Toxicity Modeling Suite (2019/20)

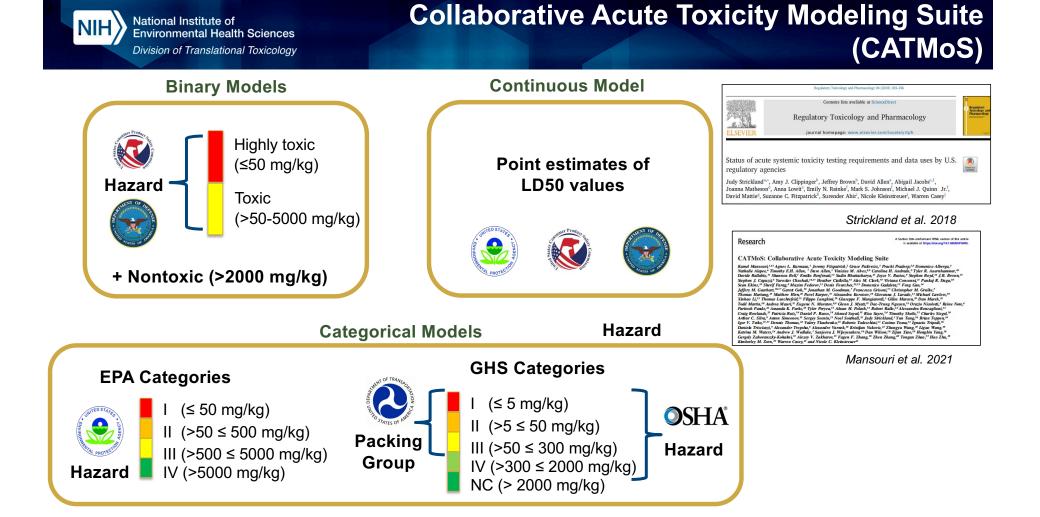
Kleinstreuer et al. (<u>https://doi.org/10.1016/j.comtox.2018.08.002</u>) Mansouri et al. (<u>https://doi.org/10.1289/EHP8495</u>)

Endocrine Disruptor Screening Program

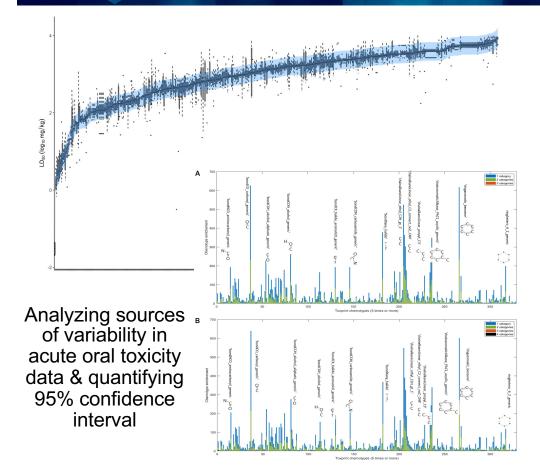
Acute Toxicity Workgroup: alternative methods

ICCVAM: Interagency Coordinating Committee on the Validation of Alternative Methods




EDSP whitepaper

 Certain NAMs have been validated by EPA and may now be accepted by EPA as alternatives for certain EDSP Tier 1 assays, while other NAMs are useful for prioritization under the EDSP and for consideration as OSRI in WoE evaluations.


NAMs Acceptable for Priority Setting and WoE Analysis:

 In Silico Qualitative Structure Activity Relationship Consensus Models for ER and AR. Available in the OPERA tool.

Characterizing Variability and Applying to Model Evaluation

Collaborative Acute Toxicity Modeling Suite (CATMoS) Performance

	Very Toxic		Non-Toxic		EPA		GHS	
	Train	Eval	Train	Eval	Train	Eval	Train	Eval
Sensitivity	0.87	0.70	0.88	0.67	0.81	0.62	0.80	0.58
Specificity	0.99	0.97	0.97	0.90	0.92	0.86	0.95	0.90
Balanced Accuracy	0.93	0.84	0.92	0.78	0.87	0.74	0.88	0.74
<i>In vivo</i> Balanced Accuracy	0.	81	0	89	0.	82	0.	79

	LD50	values	LD50 values
	Train Eval		In Vivo
R2	0.85	0.65	0.80
RMSE	0.30	0.49	0.42

CATMoS QSAR predictions perform just as well as replicate *in vivo* data at predicting oral acute toxicity outcome

Karmaus et al. Toxicol Sci. 2022; Mansouri et al. EHP 2021

Application to Ecological Risk Assessment

- EPA's Office of Pesticide Programs (OPP) registers conventional pesticides and the Environmental Fate and Effects Division (EFED) conducts the needed ecological risk assessments
- Registrants submit required data, as specified in the Code of Federal Regulations (40 CFR 158), to assess risk to non-target animals and plants
- Rat in vivo acute oral toxicity LD50 data are used as a surrogate to assess risk to all mammalian wildlife
- The data are used for risk estimation (comparison of hazard and exposure) and precautionary and compulsory label statements to minimize the potential harm to non-target organisms
- EPA compared CATMoS results to OPP empirical data from in-vivo studies for 178 active ingredients
- CATMoS predictions of >2000 mg/kg-bw were reliable

National Institute of Environmental Health Sciences

Predicting Acute Systemic Toxicity of Mixtures

Division of Translational Toxicology

Regulatory Toxicology and Pharmacology 125 (2021) 105007 Contents lists available at ScienceDirect Regulatory ovicology and Pharmacolog **Regulatory Toxicology and Pharmacology** journal homepage: www.elsevier.com/locate/yrtph SEVIER

Performance of the GHS Mixtures Equation for Predicting Acute **Oral Toxicity**

Jon Hamm^{a,*}, David Allen^a, Patricia Ceger^a, Tara Flint^b, Anna Lowit^b, Lindsay O'Dell^b, Jenny Tao^b, Nicole Kleinstreuer

^a ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA

^b Office of Pesticide Programs, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Washington, DC, 20460, USA

ABSTRACT

^c National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA

toxicity of mixtures, particularly those with lower toxicity.

ARTICLE INFO

Handling Editor: Dr. Lesa Aylward

Keywords: Acute systemic toxicity Alternative approaches **GHS** Mixtures equation Non-animal methods **Regulatory** requirements

Acute oral toxicity classifications are based on the estimated chemical dose causing lethality in 50 % of laboratory animals tested (LD50). Given the large number of pesticide registration applications that require acute toxicity data, an alternative to the in vivo test could greatly reduce animal testing. The United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS) Mixtures Equation estimates the acute toxicity of mixtures using the toxicities of mixture components. The goal of this study was to evaluate the concordance of LD₅₀s predicted using the GHS Mixtures Equation and LD₅₀s from the in vivo test results. Using the EPA classification system, concordance was 55 % for the full dataset (N = 671), 52 % for agrochemical formulations (N = 620), and 84 % for antimicrobial cleaning products (N = 51). Most discordant results were from substances LD₅₀ > 2000 mg/kg (limit test) or 2000 < LD₅₀ < 5000 mg/kg that were predicted as LD₅₀ >

5000 mg/kg. A supplementary analysis combining all formulations with an $LD_{50} > 500$ mg/kg produced a concordance of 82 %. The lack of more toxic formulations in this dataset prevented a thorough evaluation of the GHS equation for such substances. Accordingly, our results suggest the GHS equation is helpful to predict the

- Promising approach for less ٠ toxic substances
- Within-class concordance was • consistently over 85%
- Animal tests are inherently ٠ variable. Similar underclassification is observed following a repetition of the animal test.

Predicting Acute Systemic Toxicity of Mixtures

Regulatory Toxicology and Pharmacology 125 (2021) 105007

Regulatory Toxicology a

journal homepage: www.elsev

Contents lists available at

Performance of the GHS Mixtures Equation for Oral Toxicity

Jon Hamm^{a,*}, David Allen^a, Patricia Ceger^a, Tara Flint^b, A Jenny Tao^b, Nicole Kleinstreuer^c

^a ILS, P.O. Box 13501, Research Triangle Park, NC, 27709, USA

^b Office of Pesticide Programs, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave, NW, Was ^c National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, 12233, Research Triangle Park, NC, 27709, USA

ARTICLE INFO

Handling Editor: Dr. Lesa Aylward

Keywords: Acute systemic toxicity Alternative approaches **GHS** Mixtures equation Non-animal methods **Regulatory** requirements

I.C).

guide

ABSTRACT: While exposure of humans to environmental hazards often occurs with complex chemical mixtures, the majority of existing toxicity data are for single compounds. The Globally Harmonized System of chemical classification (GHS) developed by the Organization for Economic Cooperation and Development uses the additivity formula for acute oral toxicity classification of mixtures, which is based on the acute toxicity estimate of individual ingredients. We evaluated the prediction of GHS category classifications for mixtures using toxicological data collected in the Integrated Chemical Environment (ICE) developed by the National Toxicology Program (United States Department of Health and Human Services). The ICE database contains in vivo acute oral toxicity data for ~10,000 chemicals and for 582 mixtures with one

_		Predicted GHS Category				
		1	2	3	4	5
2	1	0	0	0	0	0
ICE GHS Category	2	1	0	1	0	0
GHS	3	0	0	22	6	2
L L	4	0	1	8	85	47
	5	0	0	7	67	256

Article

or multiple active ingredients. By using the available experimental data for individual ingredients, we were able to calculate a GHS category for only half of the mixtures. To expand a set of components with acute oral toxicity data, we used the Collaborative Acute Toxicity Modeling Suite (CATMoS) implemented in the Open Structure-Activity/Property Relationship App to make predictions for active ingredients without available experimental data. As a result, we were able to make predictions for 503 mixtures/ formulations with 72% accuracy for the GHS classification. For 186 mixtures with two or more active ingredients, the accuracy rate was 76%. The structure-based analysis of the misclassified mixtures did not reveal any specific structural features associated with the mispredictions. Our results demonstrate that CATMoS together with an additivity formula can be used to predict the GHS category for chemical mixtures.

Ph	yschem properties	Chemicals	Version
BP	Boiling Point	7860	2.9
HL	Henry's Law Constant	2233	2.9
LogP	Octanol-water Partition Coefficient	18154	
MP	Melting Point	22554	2.9
VP	Vapor Pressure	6764	2.9
WS	Water Solubility	9943	2.9
рКа	Acid Dissociation Constant	6503	2.6
KOA	Octanol/Air Partition Coefficient	270	2.6

	Environmental fate	Chemicals	Version
AOH	Atmospheric Hydroxylation Rate	692	2.6
BCF	Bioconcentration Factor	626	2.6
BioHL	Biodegradation Half-life	150	2.6
RB	Ready Biodegradability	1603	2.6
КM	Fish Biotransformation Half-life	541	2.6
КОС	Soil Adsorption Coefficient	728	2.6

OPERA v2.9 Models ADME properties Chemicals Version

	ne properties	Chemicals	Version
FUB	Fraction unbound	3229	2.8
Clint	Intrinsic clearance	1346	2.8
CACO2	Caco-2 permeability	4601	2.8

Το	kicity endpoints	Chemicals	Version
ER	Estrogen Receptor Activity	32464	2.6
AR	Androgen Receptor Activity	47673	2.6
AcuteTox	Acute Oral Systemic Toxicity	50660	2.6

Future models				
Inhalation	Acute Inhalation Systemic Toxicity			
SixPack	Acute Toxicity Six-Pack Endpoints			
UGT	Glucuronidation: substrate selectivity			
SULT	Sulfation: substrate selectivity			

https://github.com/NIEHS/OPERA

PFAS in OPERA models

	Models	PFAS/Total
BP	Boiling Point	346/7860
LogP	Octanol-water Partition Coef.	97/18154
MP	Melting Point	409/22554
VP	Vapor Pressure	178/6764
WS	Water Solubility	105/9943

		VP	Vapor			
	Deviation of log <i>lip</i> (Pressure	urements	at 25 °C	\frown
	COSMOtherm	EPI Suite	NICEATM	ACD/Labs	TEST	OPERA
MAE RMSE	1.22 1.48	1.08 1.48	1.46 2.06	1.53 1.99	1.31 1.91	0.95 1.26

LogP Octanol-water Coef

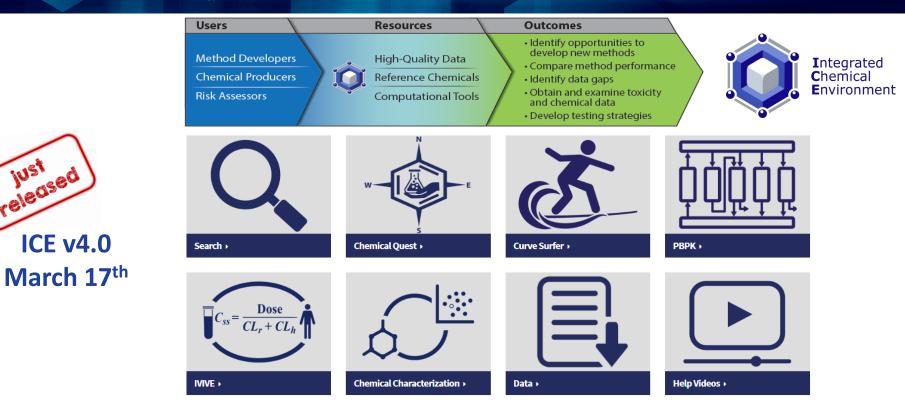
Deviation of octanol-water partition ratio (log Kow) estimates from experimental measurements at 25 °C

	COSMOtherm	EPI Suite	NICEATM	ACD/Labs	OPERA	LSER
MAE	0.41	0.25	0.68	0.61	0.21	0.33
RMSE	0.50	0.29	1.13	0.70	0.28	0.36
	0.00	0.27	1.10	0.70	0.20	Ĕ

WS Water solubility

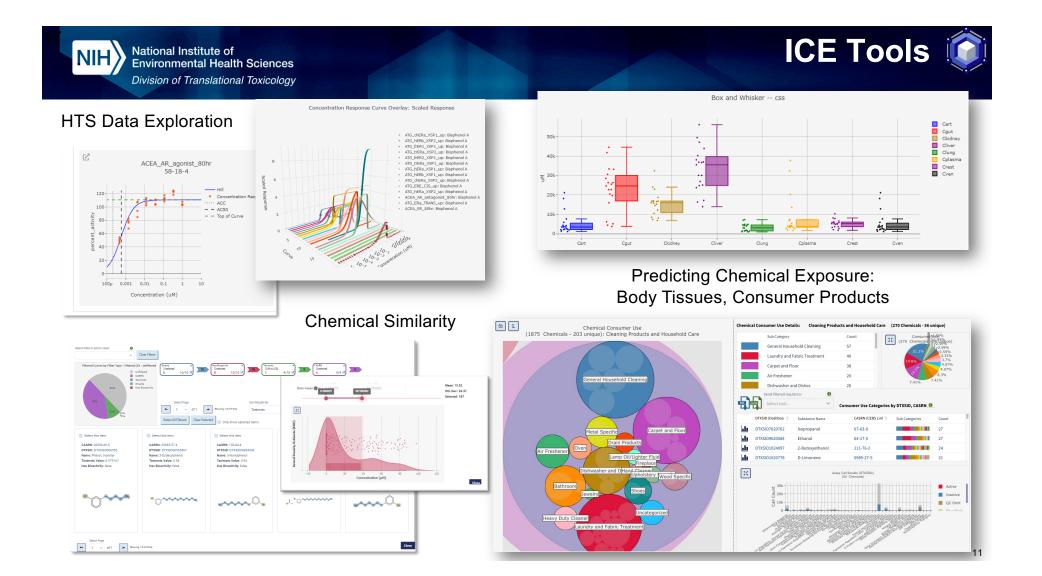
Deviation of water solubility (log S; mg/L) estimates from experimental measurements at 25 °C

		COSMOtherm	EPI Suite	NICEATM	TEST ^a	OPERA
Environmental Chemistry	MAE RMSE	0.35 0.41	1.82 2.20	2.38 2.55	0.95 1.36	0.23 0.36


Property Estimation of Per- and Polyfluoroalkyl Substances: A Comparative Assessment of Estimation Methods

Alina Lampic and J. Mark Pamis*

Chemical Properties Research Group (Canadian Environmental Modelling Centre), Department of Chemistry, Trent University, Peterborough, Ontario, Canada



ICE: The Integrated Chemical Environment

Bell et al. 2017 EHP Bell et al. 2020 Tox In Vitro Abedini et al. 2021 Comp Tox Daniel et al. 2022 Front Toxicol

https://ice.ntp.niehs.nih.gov/

ICE v4.0: New Features

Search Results Redesign (beta):

• A completely redesigned Search results interface features new summary interactive visualizations.

PBPK and IVIVE Tools Feature Enhancements:

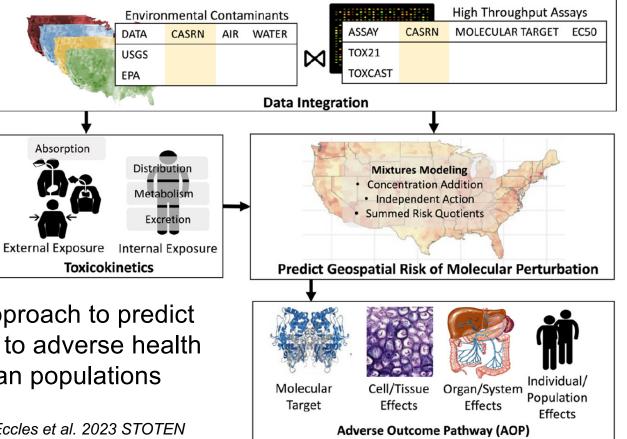
- ICE PBPK and IVIVE tools now incorporate a gestational model from U.S. EPA's httk package (v2.2.2; released February 2023).
- Updated dosing options for users modeling inhalation exposure (dose units of ppmv in addition to µM).

- ICE tools integrate exposure predictions from the EPA's SEEM3 (Systematic Empirical Evaluation of Models) model (Ring et al. 2019).
- Download exposure predictions on the ICE Data Sets page and the ICE REST API.
- Predicted exposure data can also be compared to the equivalent administered doses (EADs) in the IVIVE tool.

Chemical Name Input Options:

ICE tools and the ICE REST API now accept chemical names and synonyms as input along with other pre-existing input
options like CASRN, DTXSID, SMILES, and InChIKeys.

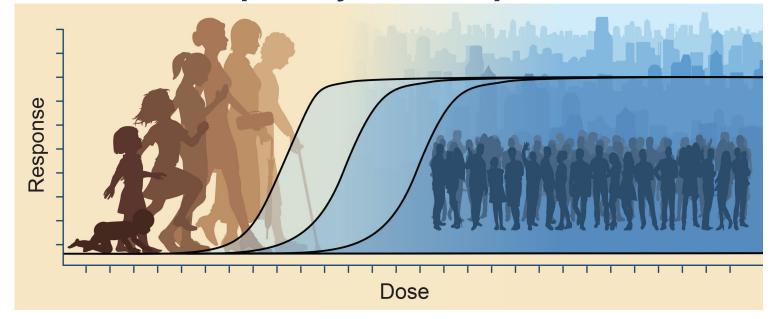
Environmental Health Sciences Division of Translational Toxicology

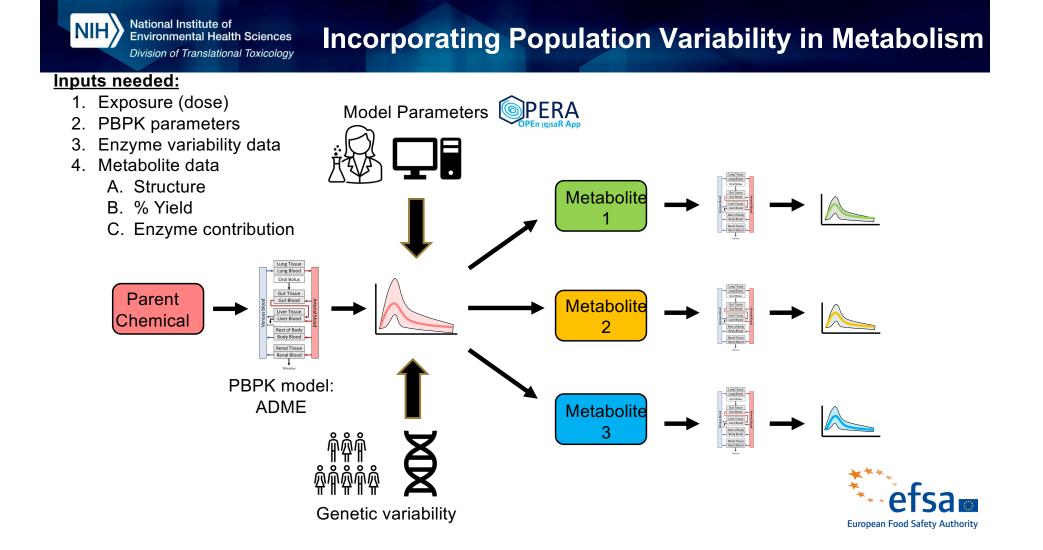

Linking Tox21 in vitro HTS data and exposure information to predict geospatial risk of molecular perturbation.

Eventual goal: use approach to predict chemical contributions to adverse health outcomes across human populations

Eccles et al. 2023 STOTEN

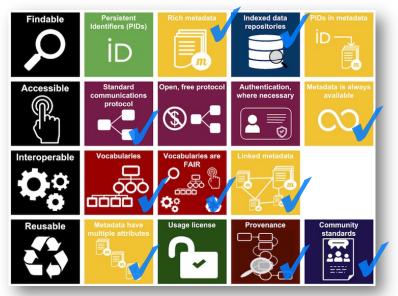
Absorption


Geospatial Modeling Approach



October 2022 NICEATM Workshop

Using New Approach Methodologies to Address Variability and Susceptibility Across Populations


https://ntp.niehs.nih.gov/go/popvar

Standardization Efforts at DTT

Getting to FAIR+ requires standard metadata, terminologies, and quality curation

NIH Office of Data Science Strategy FAIR checklist

Courtesy of Charles Schmitt

- · Establishment of a DTT Data Dictionary
 - e.g., populations, treatments, outcomes, endpoints
 - Incorporated into DSMPs
 - In-house expertise with ontologies
- Community is key, both local and global:
 - DTT Knowledge Management Team
 - DTT-EPA collaborations
 - Engagement with ontology communities, e.g.
 - Ontology for Biomedical Investigations (OBI)
 - Adverse Outcome Pathways (AOPs)
 - Engagement with NIEHS grantee communities
 - Environmental Health Language Collaborative

NIH

National Institute of Environmental Health Sciences Division of Translational Toxicology

Environmental Health Language Collaborative

Community of Practice

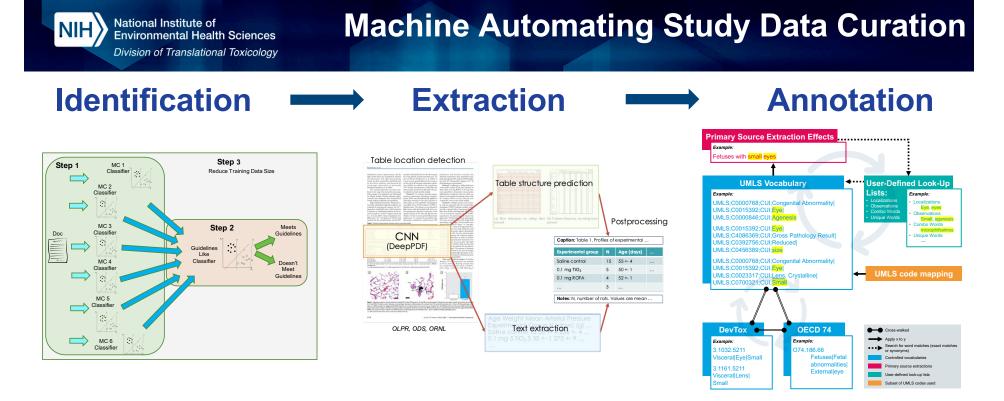
Community

The EHLC community serves as a place where members can exchange information, ideas, and expertise. Community members work to advance the appreciation for and adoption of **semantic and language approaches** through education and training.

Forum to Coordinate and Collaborate

> EHLC is a hub to coordinate harmonization activities and collaborate on defining use cases and gaps, prioritizing activities, and describing the language strategies or approaches to enable data querying, sharing, and interoperability.

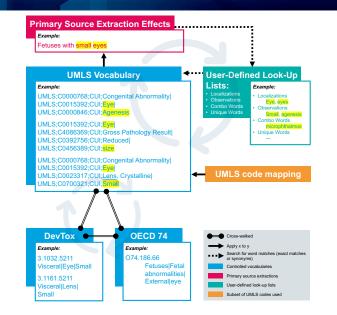
EHLC Mission: to advance integrative environmental health research by promoting access, use, and harmonization of data through interoperable terminologies and best practices.


Use Case	Champion
1. What data exists for a given chemical/endpoint/exposure scenario?	Michelle Angrish, EPA Shannon Bell, RTI
2. What are the biological processes and biomarkers associated with exposure and how do they relate to the potential for an adverse outcome associated with a given exposure	Steve Edwards, RTI Chirag Patel, Harvard University
3. How do we combine individual-level data from multiple independent studies to understand how exposures X+Y impact health outcome Z?	Jeanette Stingone, Columbia University

Contact: Stephanie Holmgren (Holmgren@niehs.nih.gov)

The EHLC community serves to support and promote the development and application of harmonized language solutions to address the gaps and needs identified in each use case.

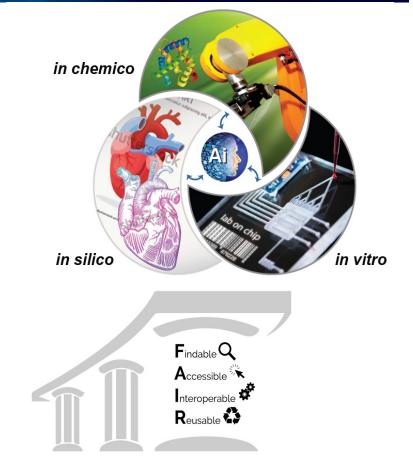
*


- Important for leveraging high-quality studies in the published literature
- Applications in systematic review of chemical effects
- Establishing reference datasets for validating new methods

Foster et al. 2023 in prep

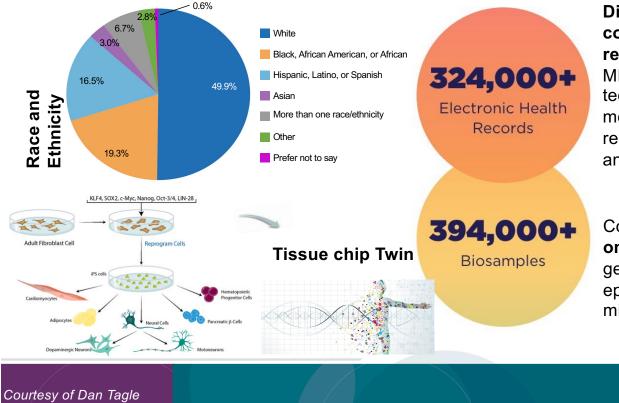
Study Extractions and Endpoint Mapping

- Extract study details from prenatal developmental toxicity guideline studies
 - NTP legacy studies
 - ECHA submissions (expert reviewed for quality)
- Programmatically map results to controlled vocabularies/ontologies
 - UMLS (ToxRefDBv2.0)
 - EPA/BfR DevTox DB
 - OECD Harmonized Templates
- Code is plug-and-play


- 72% of all extractions received standardized controlled vocabulary mappings via the automation code.
- Time savings to map extracted information >500 hours

Foster et al. 2023 in prep

FAIR Data as the Foundation and AI as the Enabler


- Findable, Accessible, Interoperable, and Reusable data objects, e.g.
 - comparable, compatible, integrable multi-omic databases
- Al-enabled approaches that leverage the full technological toolbox and are iterative, e.g.
 - development of in silico "digital twins" of in vitro and in vivo systems
 - large language models (GPT-4) supporting hypothesis generation

Digital and Tissue Chip Twins for Precision Medicine

"right medicine to right person at right time" \$1.5B over 10 years

- Leveraging the NIH All of Us program: target >1M individuals across the United States
- (as of Sep 2022 >535,000 participants)

Digital twin for an individual from **comprehensive longitudinal clinical record** such as medical imaging (e.g. MRI, ultrasound, CT scans); wearable technologies (e.g. smart watches, ECG monitors, glucose monitors); voice recordings; other clinical information; and/or, self-reported data

Collection of **blood**, **urine** samples for **omics analysis** (e.g., genomics (whole genome sequencing), transcriptomics, epigenomics, proteomics, metabolomics, microbiomics); **blood to iPSCs**

Accelerating Almplementation

Торіс	Challenges	Opportunities
Al-ready data sets	Building these is not the norm; Incentives to invest; Coordination across groups	Eager modeling community; Industry partnerships; Infrastructure for data challenges
Standards	Under funded; Coordination across groups; Workplace skills; Incentives for Vendors to Adopt	Strengthen engagement with the standards efforts; NIH Common Data Elements; International efforts
Epidemiology and clinical data	Lack of models, tools, and common measures to bridge toxicology to clinical; Ensure data security	Exposome initiatives; Capture of mechanistic data on the Epi/Clinical side; Greater involvement of modeling/statistical community;
Knowledge Models (e.g., ontologies, AOPs)	Under funded; High human cost; Lack of training	Use of AI approaches; Industry partnerships; Better knowledge capture tools
Biomedical Data Ecosystem (FAIR+)	Federation of data has high costs & evolves slowly; Standardized protocols; Lack of cloud computing skills; Human focused data; Lack of industry data	NIH investments in data ecosystem; Cross- agency data federation; Industry involvement (increased data access)
Workforce/IT needs	Lack of data scientists, data-aware workforce to drive data sharing/use; Data security & QA	Workplace development efforts; training programs; hardware/software infrastructure

Interagency Coordinating Committee on the Validation of Alternative Methods

ICCVAM Public Forum

- ICCVAM's goals include promotion of national and international partnerships between governmental and nongovernmental groups, including academia, industry, advocacy groups, and other key stakeholders.
- To foster these partnerships ICCVAM holds an annual public forum (usually in May) to share information and facilitate direct communication of ideas and suggestions from stakeholders
- Recent meetings have included representatives from ≥15 ICCVAM agencies and participation from more than 100 stakeholders.
- Next meeting is May 18-19, 2023 at NIH in Bethesda, MD

https://ntp.niehs.nih.gov/go/iccvamforum-2023

Acknowledgments

The NICEATM Group

NCATS

Dan Tagle

NIEHS/ODS

Stephanie Holmgren

